IEMS5730 Big Data Systems and Information Processing

Overview of Big Data Processing via Datacenter-scale Computing

Prof. Wing C. Lau Department of Information Engineering wclau@ie.cuhk.edu.hk

Overview 1

Acknowledgements

- The slides used in this chapter are adapted from the following sources:
 - "Data-Intensive Information Processing Applications," by Jimmy Lin, University of Maryland.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States. See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

- CS246 Mining Massive Data-sets, by Jure Leskovec, Stanford University.
- Stat 260 Scalable Machine Learning of UC Berkeley, by Alex Smola, CMU.
- 10-605 Machine Learning from Big Datasets, by William Cohen, CMU.
- "Intro to Hadoop" in UCBerkeley i291 Analyzing BigData with Twitter, by Bill Graham, Twitter.
- All copyrights belong to the original authors of the material.

What is this course about?

- Computing Infrastructure for Data-intensive Information Processing and Analytics
- Focus on the System Aspects of Big Data Processing:
 - Big Data Computing Infrastructure
 - The Big Data Processing Software Stack
 - Mainstream Parallel and Distributed Programming Models,
 - Their corresponding Platforms/ Frameworks and
 - Additional Operational/Programming Tools

for Big Data Processing/Analytics in the Real World

- This course is NOT about the Design/ Analysis of Machine Learning or Data Mining algorithms
 - For ML/DM, you should consider to take IERG4300, Web-scale Information Analysis, instead of (or in parallel with) this course

Course Administrivia

Course Pre-requisites

- Strong Programming and Hands-on Software Development skills ;
- Some Operating System Management/Configuration Skills
- No previous experience necessary in
 - MapReduce/ Hadoop or other
 - Parallel and distributed programming models
 - BUT we expect you to pick them up quickly

What is MapReduce?

- The 1st widely-deployed (successful) Programming model for expressing distributed computations at a massive scale
- Execution framework (actual software system) for organizing and performing such computations
- Open-source implementation called Hadoop

Set up your own Hadoop 2.x Cluster + run a sample MapReduce program using a Free Public Cloud Infrastructure Due in 10 days: Due Date: Jan 21, 2023 11:59am

(noon-time on CNY Eve !!)

YARN for Hadoop 2.0

- YARN (Yet Another Resource Negotiator)
 - Like an Operating System (OS) for a Data-center-scale Computing Cluster
 - Serve as the resource management platform for Cluster of Computers to support general Distributed/Parallel Applications/Frameworks beyond the MapReduce computational model.

V. K. Vavilapalli, A. C. Murthy, "Apache Hadoop YARN: Yet Another Resource Negotiator", in ACM Symposium on Cloud Computing (SoCC) 2013.

A Big Data Processing Stack with YARN

What is MapReduce or Hadoop (cont'd)?

- Hadoop version 1.0 supports mainly MapReduce and a large-scale Distributed File System called Hadoop Distributed File System (HDFS)
 - HDFS is the open-source version of Google File System (GFS)
- Since version 2.0, Hadoop has added YARN to become a general resource management platform (i.e. OS for a Datacenter-scale Cluster) which supports not only MapReduce, HDFS, but also other datacenterscale computing models/ frameworks, e.g.
 - Giraph for Graph processing,
 - Storm for stream processing,
 - TeZ for DAG-based parallel-processing
 - Spark, etc.

Hadoop Distributed File System (HDFS) Architecture

Putting everything together under Hadoop 1.0

Different Terminologies for Job and Task Tracking under Hadoop2.0 / YARN

- Scalability Clusters of 6,000-10,000 machines
 - Each machine with 16 cores, 48G/96G RAM, 24TB/36TB disks
 - 100,000+ concurrent tasks
 - 10,000 concurrent jobs

HDFS architecture and terminologies largely remain unchanged w.r.t. 0 Hadoop 1.0 as shown in previous 2 slides Overview

YARN Framework

RescourceManager:

Arbitrates resources among all the applications in the system

NodeManager:

the per-machine slave, which is responsible for launching the applications' containers, monitoring their resource usage

ApplicationMaster:

Negatiate appropriate resource containers from the Scheduler, tracking their status and monitoring for progress

Container:

Unit of allocation incorporating resource elements such as memory, cpu, disk, network etc, to execute a specific task of the application (similar to map/reduce slots in MRv1)

YARN Execution Sequence

- 1. A client program submits the application
- ResourceManager allocates a specified container to start the ApplicationMaster
- ApplicationMaster, on boot-up, registers with ResourceManager
- ApplicationMaster negotiates with ResourceManager for appropriate resource containers
- On successful container allocations, ApplicationMaster contacts NodeManager to launch the container
- Application code is executed within the container, and then ApplicationMaster is responded with the execution status
- During execution, the client communicates directly with ApplicationMaster or ResourceManager to get status, progress updates etc.
- Once the application is complete, ApplicationMaster unregisters with ResourceManager and shuts down, allowing its own container process

Cluster Resource Management w/ YARN in Hadoop2.0

- Multiple frameworks (Applications) can run on top of YARN to share a Cluster, e.g. MapReduce is one framework (Application), MPI, or Storm are other ones.
- YARN splits the functions of JobTracker into 2 components: resource allocation and job-management (e.g. task-tracking/ recovery):
 - Upon launching, each Application will have its own Application Master (AM), e.g. MR-AM in the figure above is the AM for MapReduce, to track its own tasks and perform failure recovery if needed
 - Each AM will request resources from the YARN Resource Manager (RM) to launch the Application's jobs/tasks (Containers in the figure above) ;
 - The YARN RM determines resource allocation across the entire cluster by communicating with/ controlling the Node Managers (NM), one NM per each machine. Overview 17

Computing/ Cloud Resources

- Hadoop on your local machine
- Hadoop in a Virtual Machine on your local machine
- Sign-up for Freebie (limited-time) Trial accounts from Commercial Cloud Computing Services:
 - Amazon Web Service (AWS), Google Compute Engine
 - Homework sets will require each student to setup various Big Data Processing systems using these Public Cloud Services
- The IE DIC (Data-Intensive Cluster):
 - Already Setup with Hadoop 2.0/ YARN, MapReduce, Hadoop Distributed File System (HDFS), Pig, Hive, Spark, Kubernetes, etc
- You may use your own cluster installed over the free public cloud service or learn to use the IE DIC to run different Parallel/ Distributed Programming tasks.

This course is not for you...

- If you' re not genuinely interested in the topic
- If you can't put in the time
- If you' re not ready to do a lot of work
- If you' re not open to thinking about computing in new ways
- If you can't cope with the uncertainty, unpredictability, etc. that comes with bleeding edge software

Otherwise, this will be a richly rewarding course!

- If you do not have any Operating System Internals background, e.g., from
 - An undergrad course in O.S. and/ or
 - Managing/Running a Linux-based computer

You would need to pick-up such skills yourself promptly but this can be VERY time-consuming, ADDITIONAL 30-40 hours per Homework by 19

Zen

- We will be using bleeding edge technologies (= immature!)
 - Bugs, undocumented features, inexplicable behavior
 - Data loss(!)
- Don't get frustrated (take a deep breath)...
 - Those W\$*#T@F! moments
- Be patient...
 - We will inevitably encounter "situations" along the way
- Be flexible...
 - We will have to be creative in workarounds
- Be constructive...
 - Tell me how I can make everyone's experience better

Web-Scale, Big Data

How many users and objects?

• Flickr has >6 billion photos

• Facebook has 1.15 billion active users

 Google is serving >1.2 billion queries/day on more than 27 billion items

>2 billion videos/day watched on YouTube

How much data?

- Modern applications use massive data:
 - Rendering 'Avatar' movie required >1 petabyte of storage
 - eBay has >6.5 petabytes of user data
 - CERN's LHC will produce about 15 petabytes of data per year
 - In 2008, Google processed 20 petabytes per day
 - German Climate computing center dimensioned for 60 petabytes of climate data
 - Someone estimated in 2013 that Google had
 10 exabytes on disk and ~ 5 exabytes on tape backup
 - NSA Utah Data Center is said to have 5 zettabyte (!)
- How much is a zettabyte?
 - 1,000,000,000,000,000,000,000 bytes
 - A stack of 1TB hard disks that is 25,400 km high

Who cares?

• Ready-made large-data problems

- Lots of user-generated content
- Even more user behavior data
- Examples: Facebook friend suggestions, Google ad placement
- Business intelligence: gather everything in a data warehouse and run analytics to generate insight

• Utility computing

- Provision Hadoop clusters on-demand in the cloud
- Lower barrier to entry for tackling large-data problem
- Commoditization and democratization of large-data capabilities

What to do with More Data?

- User Behavior Analysis
- AB Test Analysis
- Ad Targetting
- Trending Topics
- User and Topic Modeling
- Recommendations (Collaborative Filtering)
- Predictions
- Novel/ Abnormality Detection
- Training/Building AI, e.g. Alpha Go, Apple Siri, Google Translate
- Following Theory, Experiment and Simulation,

Big Data has become the 4th-Paradigm of Science s/knowledge/data/g

Knowledge Discovery via **Scalable** Information Analytics, e.g. **Scalable** Data Mining, Statistical Modeling, Machine Learning

There's no Data like more Data!

How do we get here if we' re not Google?

By 2001, we have learned that, for many tasks, there's no real *substitute* for using lots of data

(Banko and Brill, ACL 2001) (Brants et al., EMNLP 2007)

...and in 2009

Eugene Wigner's article "The Unreasonable Effectiveness of Mathematics in the Natural Sciences" examines why so much of physics can be neatly explained with simple mathematical formulas such as f = ma or $e = mc^2$. Meanwhile, sciences that involve human beings rather than elementary particles have proven more resistant to elegant mathematics. Economists suffer from physics envy over their inability to neatly model human behavior. An informal, incomplete grammar of the English language runs over 1,700 pages.

Perhaps when it comes to natural language processing and related fields, we're doomed to complex theories that will never have the elegance of physics equations. But if that's so, we should stop acting as if our goal is to author extremely elegant theories, and instead embrace complexity and make use of the best ally we have: the unreasonable effectiveness of data.

Norvig, Pereira, Halevy, "The Unreasonable Effectiveness of Data", 2009

Emphasis of this course

• We will stress on:

- Parallel/ Distributed Programming Models and Architectures for processing Massive Datasets !
- Open-source de facto Standard Frameworks
- Scalability

What will we learn?

- We will learn to process/ compute with different types of Big Data:
 - Data is of Large Volume (Terabyte-sized files)
 - Data from a Large Graph
 - Data is Infinite/ never-ending (Stream)
 - Data comes in Batches and can afford offline processing
 - Data comes in Fast and requires Low-latency processing

• We will learn to use computation models beyond single machine:

• Programming and Running Datacenter-scale Computing Clusters

How do you want that data?

Overview 32

How do we scale up processing for Big Data ?

Single Node Architecture

"Classical" Machine Learning, Statistics, Data Mining

Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 - ~4 months to read the web
- ~1,000 hard drives to store the web
- Take even more to do something useful with the data!
- Today, a standard architecture for such problems is emerging:
 - Cluster of commodity Linux nodes
 - Commodity network (Ethernet) to connect them

Cluster Architecture

Each rack contains 16-64 nodes

In 2011, it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

Interconnection via a 3-stage Clos Network (instead of a Tree)

Clos Networks' Reappearance in Datacenter Networks (aka the Spine and Leaf Topology, or Folded Clos, or Fat-Trees)

The Top of Rack (ToR) switches are the Leaf switches Each ToR is connected to multiple Core switches which represent the Spine. # of Uplinks (of each ToR) = # of Spine switches # of Downlinks (of each Spine switch) = # of Leaf switches Multiple ECMP exists for every pair of Leaf switches Support Incrementally "Scale-out" by adding more Leaf and Spine switches

"Jupiter Rising: A Decade of Clos Topologies and Central Control in Google's Datacenter Networks," ACM Sigcomm 2015.

39

Commodifized Big Data Processing via Cloud Computing?

The best thing since sliced bread?

• Before clouds...

- Grids
- Vector supercomputers
- ...
- Cloud computing means many different things:
 - Large-data processing
 - Rebranding of web 2.0
 - Utility computing
 - Everything as a service

Utility Computing

• What?

- Computing resources as a metered service ("pay as you go")
- Ability to dynamically provision virtual machines
- Why?
 - Cost: capital vs. operating expenses
 - Scalability: "infinite" capacity
 - Elasticity: scale up or down on demand
- o Does it make sense?
 - Benefits to cloud users
 - Business case for cloud providers

I think there is a world market for about five computers. – Thomas J Watson of IBM, 1943

Enabling Technology: Virtualization

Virtualized Stack

Everything as a Service

- Utility computing = Infrastructure as a Service (IaaS)
 - Why buy machines when you can rent cycles?
 - Examples: Amazon's EC2, Google Compute Engine, Rackspace
- Platform as a Service (PaaS)
 - Give me nice API and take care of the maintenance, upgrades, ...
 - Example: Google App Engine, Google Kubernetes
- Software as a Service (SaaS)
 - Just run it for me!
 - Example: Gmail, Office 360, Salesforce.com

Offerings of a Leading Cloud Computing Service Provider: Amazon Web Services (AWS)

Overview of AWS Services

What is Amazon Web Services (AWS)?

- AWS provides a collection of services for building cloud applications
- Services for:
 - Storage: S3, EBS
 - Computation: Elastic Cloud Computing (EC2), scaling/load balancer, Elastic Map/Reduce, Elastic Beanstalk
 - Databases: RDS, DynamoDB, ElastiCache
 - **Coordination**: Simple Notification Service, Simple Workflow Framework
 - Content delivery network
 - Amazon CloudFront
 - Amazon Mechanical Turk (MTurk) A 'marketplace for work'

• ...

• All services are paid depending on use

http://phx.corporate-ir.net/phoenix.zhtml?c=176060&p=irol-corporateTimeline Cloud Providers 48

Using AWS Services

- AWS Management Console
 - Easy to use, great for manual configurations
 - Use username / password provided
- Command line tools
 - For writing scripts
 - e.g., create a set of machines to analyze data every day
 - Use access key ID and secret access key, or certificates for EC2
- AWS API
 - Integrating cloud services into your applications
 - e.g., storing data on the cloud, running computation in the background
 - Use access key ID and secret access key, or certificates for EC2
- SSH into EC2 instances is performed using a different keypair

Setting up an AWS account

Sign up for an account on aws.amazon.com

- You need to choose an username and a password
- These are for the management interface only
- Your programs will use other credentials (RSA keypairs, access keys, ...) to interact with AWS

AWS credentials

Command-line tools SOAP APIs

• Why so many different types of credentials?

The AWS management console

- Used to control many AWS services:
 - For example, start/stop EC2 instances, create S3 buckets...

REST and SOAP

o How do your programs access AWS?

- Via the REST or SOAP protocols
- Example: Launch an EC2 instance, store a value in S3, ...

• Simple Object Access protocol (SOAP)

- Not as simple as the name suggests
- XML-based, extensible, general, standardized, but also somewhat heavyweight and verbose
- Increasingly deprecated (e.g., for SimpleDB and EC2)
- Representational State Transfer (REST)
 - Much simpler to develop than SOAP
 - Web-specific; lack of standards

How do we scale up processing for Big Data ?

Or: How to run a Job on MANY potentially FAULTY boxes ?

Using Commodity Hardware

 80-90' s: High Performance Computing Very reliable, custom built, expensive

 Now: Consumer hardware to replicate, BUT not very reliable,

Compute Card (2 chips, 2x1x1)

Chip

(2 processors

System 64 cabinets. 64x32x32

180/360 TF/s

16 TB DDR

(32 Node boards, 8x8x16)

> 2.9/5.7 TF/s 256 GB DDR

Node Board (32 chips, 4x4x2) 16 Compute Cards

Why commodity machines?

	HP INTEGRITY SUPERDOME-ITANIUM2	HP PROLIANT ML350 G5
Processor	64 sockets, 128 cores (dual-threaded), 1.6 GHz Itanium2, 12 MB last-level cache	1 socket, quad-core, 2.66 GHz X5355 CPU, 8 MB last-level cache
Memory	2,048 GB	24 GB
Disk storage	320,974 GB, 7,056 drives	3,961 GB, 105 drives
TPC-C price/performance	\$2.93/tpmC	\$0.73/tpmC
price/performance (server HW only)	\$1.28/transactions per minute	\$0.10/transactions per minute
Price/performance (server HW only) (no discounts)	\$2.39/transactions per minute	\$0.12/transactions per minute

Fault Tolerance

- Performance goal
 - 1 failure per year
 - for a 1000-machine Cluster
- Poisson approximation

$$\Pr(n) = \frac{1}{n!} e^{-\mu} \mu^n$$

- Assume failure rate μ per machine
- Poisson rates of independent random variables are additive, so we can combine
- => With Fault Intolerant Engineering We need a rate of 1 failure per 1000 years per machine
- Fault tolerance Assume we can tolerate k faults among m machines in t time units $\Pr(f > k) = 1 - \sum_{n=1}^{k} \frac{1}{n!} e^{-\lambda t} (\lambda t)^n$

n=0

Fault tolerance

Performance Characteristics of Hardware in a Datacenter-scale Computer

The Joys of Real Hardware

Typical first year for a new cluster:

- ~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
- ~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
- ~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
- ~1 network rewiring (rolling ~5% of machines down over 2-day span)
- ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
- ~5 racks go wonky (40-80 machines see 50% packetloss)
- ~8 network maintenances (4 might cause ~30-minute random connectivity losses)
- ~12 router reloads (takes out DNS and external vips for a couple minutes)
- ~3 router failures (have to immediately pull traffic for an hour)
- ~dozens of minor 30-second blips for dns
- ~1000 individual machine failures
- ~thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Slide from talk of Jeff Dean: http://research.google.com/people/jeff/stanford-295-talk.pdf

"Facts" about Jeff Dean

- Compilers don't warn Jeff Dean. Jeff Dean warns compilers.
- Jeff Dean builds his code before committing it, but only to check for compiler and linker bugs.
- Jeff Dean writes directly in binary. He then writes the source code as a documentation for other developers.
- Jeff Dean once shifted a bit so hard, it ended up on another computer.
- When Jeff Dean has an ergonomic evaluation, it is for the protection of his keyboard.
- gcc -O4 emails your code to Jeff Dean for a rewrite.
- When he heard that Jeff Dean's autobiography would be exclusive to the platform, Richard Stallman bought a Kindle.
- Jeff Dean puts his pants on one leg at a time, but if he had more legs, you' d realize the algorithm is actually only O(log n)

CPU

- Multiple cores (e.g. Intel Xeon E7 series has 4-24 cores per CPU @2016)
- Multiple sockets (1-4) per board
- 2-4 GHz clock
- 10-100W power
- Several cache levels (hierarchical, 8-16MB total)
- Vector processing units (SSE4, AVX) <u>http://software.intel.com/en-us/avx</u>
- Perform several operations at once
- Use this for fast linear algebra (4-8 multiply adds in one operation)
- Memory interface 20-40GB/s
- Internal bandwidth >100GB/s
- 100+ GFlops for matrix matrix multiply
- Integrated low end GPU

Sandy Bridge Microarchitecture

Overview 62

GPU

- nVidia GeForce10 has 400 to 4000 cores / drawing many 100's of Watt
- Cores have hierarchical structure tricky to synchronize threads (interrupts, semaphores, etc.)
- Upto 10's of GB memory (Tesla V100 has 32GB)
- 1 TFlop (single precision)
- Max. Memory Bandwidth ~1000GB/s
- 192GB/s PCIe 4.0 bus bottleneck?

Computer Memory Hierarchy

DRAM

- 2-4 channels (32 bit wide)
- 1GHz speed
- High latency (~10ns for DDR4)
- High burst data rate (>10 GB/s)
- Avoid random access in code if possible.
- Memory align variables

 Know your platform (FBDIMM vs. DDR) (code may run faster on old MacBookPro than a Xeon)

Storage

- Harddisks (SATA3 6 Gbps) circa 2018 -
 - 4-8 TB of storage (30GB/\$)
 - 150 MB/s bandwidth (sequential)
 - 5 ms seek (200 IOPS)
 - cheap
- SSD (SATA3 6Gbps) circa 2018 -
 - 128-4096 GB storage (3-5GB/\$)
 - 500 MB/s bandwidth (sequential read/write)
 - 100,000 IOPS / < 1 ms seek (queueing)
 - Reads a little faster than writes
 - e.g. 550 vs. 520 MB/s for Samsung 850Pro
 - reliable (but limited lifetime NAND)
- NVMe (M.2 port) /PCIe SSD circa 2018 -
 - 128-2048GB storage
 - (3D XPoint: 0.7GB/\$ NAND-based 2 GB/\$)
 - 1500 3500 MB/s (sequential read/write)
 - 150,000 500,000 IOPS

Numbers (Jeff Dean says) **Everyone Should Know**

L1 cache reference	0	.5 ns
Branch mispredict	5	ns
L2 cache reference	7	ns ~= 10x
Mutex lock/unlock	100	ns
Main memory reference	100	ns ~= 15x
Compress 1K bytes with Zippy	10,000	ns
Send 2K bytes over 1 Gbps network	20,000	ns
Read 1 MB sequentially from memory	250,000	ns
Round trip within same datacenter	500,000	ns
Disk seek	10,000,000	ns diff
Read 1 MB sequentially from network	10,000,000	ns
Read 1 MB sequentially from disk	30,000,000	ns ~= 100,000x
Send packet CA->Netherlands->CA	150,000,000	ns slower than

han main mem access Overview 68

A typical disk

What do we count?

- Compilers don't warn Jeff Dean. Jeff Dean warns compilers.
- o
- Memory access/instructions are qualitatively different from disk access
- Seeks are *qualitatively different* from sequential reads on disk
- Cache, disk fetches, etc work best when you stream through data sequentially
- Best case for data processing: stream through the data *once* in *sequential order,* as it's found on disk.

Seeks vs. Scans

• Consider a 1 TB database with 100 byte records

- We want to update 1 percent of the records
- Scenario 1: random access
 - Each update takes ~30 ms (seek, read, write)
 - 10^8 updates = ~35 days
- Scenario 2: rewrite all records
 - Assume 100 MB/s throughput
 - Time = 5.6 hours(!)
- Lesson: avoid random seeks!

Other lessons (circa 2007)

Encoding Your Data

- CPUs are fast, memory/bandwidth are precious, ergo...
 - Variable-length encodings
 - Compression
 - Compact in-memory representations
- Compression very important aspect of many systems
 - inverted index posting list formats
 - storage systems for persistent data
- •This "conventional" wisdom may become out-dated already !

More recent Observations on Spark Performance Analysis [K. Ousterhout et al, NSDI 2015]

Switches & Colos

- In theory perfect point to point bandwidth (e.g. 10Gb Ethernet)
- Big switches are expensive crossbar bandwidth linear in #ports,

BUT price superlinear

- Real switches have finite buffers
 - many connections to a single machine >> bad
 - buffer overflow / dropped packets / collision avoidance
- Hierarchical structure
 - more bandwidth within rack
 - lower latency within rack
 - lots of latency between Colos
- Hadoop gives you machines where the data is (not necessarily on same rack!)
Clos Networks' Reappearance in Datacenter Networks (aka the Spine and Leaf Topology, or Folded Clos, or Fat-Trees)

The Top of Rack (ToR) switches are the Leaf switches Each ToR is connected to multiple Core switches which represent the Spine. # of Uplinks (of each ToR) = # of Spine switches # of Downlinks (of each Spine switch) = # of Leaf switches Multiple ECMP exists for every pair of Leaf switches Support Incrementally "Scale-out" by adding more Leaf and Spine switches

"Jupiter Rising: A Decade of Clos Topologies and Central Control in Google's Datacenter Networks," ACM Sigcomm 2015.

75

Clos Networks' Reappearance in Datacenter Networks (aka the Spine and Leaf Topology, or Folded Clos, or Fat-Trees)

> The Original Fat-Tree Topology [Leiserson 85]: Servers (Processors) are the leafs ; For every non-leaf node (Switch) in the tree, # of links to its Parent = # of links to its Children => Links at "Fatter" towards the top of the tree

> > Source: http://clusterdesign.org/fat-trees/

Example: All Leaf (Edge) or Spine (Core) switches are identical *Edge* 36-port switches ;

Serve

Communication Cost?

- Nodes need to talk to each other!
 - SMP (Symmetric Multi-Processor machine): latencies ~100 ns
 - LAN: latencies ~100 ບຣ
- Scaling "up" vs. scaling "out"
 - Smaller cluster of SMP machines vs. larger cluster of commodity machines
 - E.g., 8 128-core machines vs. 128 8-core machines
 - Note: no single SMP machine is big enough
- Let's model communication overhead...

Modeling Communication Costs

• Simple execution cost model:

- Fraction of local access inversely proportional to size of cluster
- n nodes (each node is a shared-memory SMP domain, ignoring cores for now)
- Total cost = cost of computation + cost to access global data

= 1 ms + f x [100 ns / n + 100 vs x (1 - 1/n)]

- Light communication: *f* =1
- Medium communication: *f* =10
- Heavy communication: f = 100
- What are the costs in parallelization?

Cost of Parallelization

number of nodes

Advantages of scaling "out"

So why not?

Data Intensive Computing

- Data collection too large to transmit economically over Internet --- Petabyte data collections
- Computation produces small data output containing a high density of information
- Implemented in "Clouds"
- Easy to write programs, fast turn around.
- MapReduce.
 - Map(k1, v1) -> list (k2, v2)
 - Reduce(k2,list(v2)) -> list(v3)
- Hadoop (Yarn), PIG, HDFS, Hbase
- Sawzall, Google File System, BigTable

The datacenter is the computer

"Big Ideas"

- Scale "out", not "up"
 - Limits of SMP and large shared-memory machines
- Move processing to the data
 - Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

"Big Ideas"

- Scale "out", not "up"
 - Limits of SMP and large shared-memory machines
- Move processing to the data
 - Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

Building Blocks

• Hundreds or thousands of racks

• Massive networking

• Emergency power supplies

• Massive cooling

Storage Hierarchy

The sense of scale...

Source: Barroso and Urs Hölzle (2009)

Storage Hierarchy

Source: Barroso and Urs Hölzle (2009)

Anatomy of a Datacenter

Energy matters!

Company	Servers	Electricity	Cost
eBay	16K	~0.6*10 ⁵ MWh	~\$3.7M/yr
Akamai	40K	~1.7*10 ⁵ MWh	~\$10M/yr
Rackspace	50K	~2*10 ⁵ MWh	~\$12M/yr
Microsoft	>200K	>6*10 ⁵ MWh	>\$36M/yr
Google	>500K	>6.3*10 ⁵ MWh	>\$38M/yr
USA (2006)	10.9M	610*10 ⁵ MWh	\$4.5B/yr

• Data centers consume a lot of energy

- Makes sense to build them near sources of cheap electricity
- Example: Price per KWh is 3.6ct in Idaho (near hydroelectric power), 10ct in California (long distance transmission), 18ct in Hawaii (must ship fuel)
- Most of this is converted into heat \rightarrow Cooling is a big issue!

Scaling up

• What if even a data center is not big enough?

- Build additional data centers
- Where? How many?

Global distribution

- Data centers are often globally distributed
 - Example above: Google data center locations (inferred)
- Why?
 - Need to be close to users (physics!)
 - Cheaper resources
 - Protection against failures

Trend: Modular data center

• Need more capacity? Just deploy another container!

Justifying the "Big Ideas"

- Scale "out", not "up"
 - Limits of SMP and large shared-memory machines
- Move processing to the data
 - Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

Recap

- Web-Scale Data their sources and uses
- What is Web-Scale Information Analytics:
 - Data Mining, Statistical Modeling, Machine Learning, and...
- What is this Course about ?
- Computing Infrastructure for Web-scale Data Processing
- How to scale out hardware for Web-scale Data processing
 ?